Phala Network Docs
  • Home
    • 👾Phala Network Docs
  • Overview
    • ⚖️Phala Network
      • 💎Phala Cloud
      • 🥷Dstack
      • 🔐GPU TEE
    • 💎PHA Token
      • 🪙Introduction
      • 👐Delegation
        • Delegate to StakePool
        • What is Vault
        • What is Share
        • WrappedBalances & W-PHA
        • Examples of Delegation
        • Use Phala App to Delegate
        • Estimate Your Reward
      • 🗳️Governance
        • Governance Mechanism
        • Join the Council
        • Voting for Councillors
        • Apply for Project Funding
        • Phala Treasury
        • Phala Governance
        • Setting Up an Account Identity
  • Phala Cloud
    • 🚀Getting Started
      • Create Your Phala Cloud Account
      • Your First CVM Deployment
      • Explore Templates
        • Launch an Eliza Agent
        • Start from Template
    • 🪨TEEs, Attestation & Zero Trust Security
      • Attestation
      • Security Architecture
    • 🥷Phala Cloud User Guides
      • Deploy and Manage CVMs
        • Deploy CVM with Docker Compose
        • Set Secure Environment Variables
        • Deploy Private Docker Image to CVM
        • Debugging and Analyzing Logs
          • Check Logs
          • Private Log Viewer
          • Debug Your Application
        • Application Scaling & Resource Management
        • Upgrade Application
        • Deployment Cheat Sheet
      • Building with TEE
        • Access Your Applications
        • Expose Service Port
        • Setting Up Custom Domain
        • Secure Access Database
        • Create Crypto Wallet
        • Generate Remote Attestation
      • Advanced Deployment Options
        • Deploy CVM with Phala Cloud CLI
        • Deploy CVM with Phala Cloud API
        • Setup a CI/CD Pipeline
    • 🚢Be Production Ready
      • CI/CD Automation
        • Setup a CI/CD Pipeline
      • Production Checklist
      • Troubleshooting Guide
      • Glossary
    • 🔒Use Cases
      • TEE with AI
      • TEE with FHE and MPC
      • TEE with ZK and ZKrollup
    • 📋References
      • Phala Cloud CLI Reference
        • phala
          • auth
          • cvms
          • docker
          • simulator
      • Phala Cloud API & SDKs
        • API Endpoints & Examples
        • SDKs and Integrations
      • Phala Cloud Pricing
    • ❓FAQs
  • Dstack
    • Overview
    • Getting Started
    • Hardware Requirements
    • Design Documents
      • Decentralized Root-of-Trust
      • Key Management Service
      • Zero Trust HTTPs (TLS)
    • Acknowledgement
    • ❓FAQs
  • LLM in GPU TEE
    • 👩‍💻Host LLM in GPU TEE
    • 🔐GPU TEE Inference API
    • 🏎️GPU TEE Benchmark
    • ❓FAQs
  • Tech Specs
    • ⛓️Blockchain
      • Blockchain Entities
      • Cluster of Workers
      • Secret Key Hierarchy
  • References
    • 🔐Setting Up a Wallet on Phala
      • Acquiring PHA
    • 🌉SubBridge
      • Cross-chain Transfer
      • Supported Assets
      • Asset Integration Guide
      • Technical Details
    • 👷Community Builders
    • 🤹Hackathon Guides
      • ETHGlobal Singapore
      • ETHGlobal San Francisco
      • ETHGlobal Bangkok
    • 🤯Advanced Topics
      • Cross Chain Solutions
      • System Contract and Drivers
      • Run Local Testnet
      • SideVM
    • 🆘Support
      • Available Phala Chains
      • Resource Limits
      • Transaction Costs
      • Compatibility Matrix
      • Block Explorers
      • Faucet
    • ⁉️FAQ
  • Compute Providers
    • 🙃Basic Info
      • Introduction
      • Gemini Tokenomics (Worker Rewards)
      • Budget balancer
      • Staking Mechanism
      • Requirements in Phala
      • Confidence Level & SGX Function
      • Rent Hardware
      • Error Summary
    • 🦿Run Workers on Phala
      • Solo Worker Deployment
      • PRBv3 Deployment
      • Using PRBv3 UI
      • PRB Worker Deployment
      • Switch Workers from Solo to PRB Mode
      • Headers-cache deployment
      • Archive node deployment
    • 🛡️Gatekeeper
      • Collator
      • Gatekeeper
  • Web Directory
    • Discord
    • GitHub
    • Twitter
    • YouTube
    • Forum
    • Medium
    • Telegram
Powered by GitBook
LogoLogo

Participate

  • Compute Providers
  • Node
  • Community
  • About Us

Resources

  • Technical Whitepaper
  • Token Economics
  • Docs
  • GitHub

More

  • Testnet
  • Explorer
  • Careers
  • Responsible Disclosure

COPYRIGHT © 2024 PHALA.LTD ALL RIGHTS RESERVED. May Phala be with you!

On this page
  • Introduction
  • The Need for Multi-Proof Systems
  • Case Studies

Was this helpful?

Edit on GitHub
  1. Phala Cloud
  2. Use Cases

TEE with ZK and ZKrollup

PreviousTEE with FHE and MPCNextReferences

Last updated 1 month ago

Was this helpful?

Introduction

In the blockchain space, our vision is to bring privacy, security, and verifiability to users. Our ultimate goal is to design a system that can simultaneously fulfill these attributes. However, relying on a single proof system to achieve this is impractical for several reasons:

  • No single cryptographic system can be guaranteed to be 100% secure. For instance, zero-knowledge proofs (zk) can have soundness bugs that are difficult to detect, while Multi-Party Computation (MPC) is susceptible to collusion risks between nodes.

  • Privacy in zkRollups cannot be fully guaranteed because sequencers can extract user transaction data during proof generation.

  • Verifiability in Fully Homomorphic Encryption (FHE) computations is challenging because the FHE server may not perform computations correctly, and without knowing the correct result, we cannot verify its accuracy.

The Need for Multi-Proof Systems

In the blockchain space, our vision is to bring privacy, security, and verifiability to users. Our ultimate goal is to design a system that can simultaneously fulfill these attributes. However, relying on a single proof system to achieve this is impractical for several reasons:

  • No single cryptographic system can be guaranteed to be 100% secure. For instance, zero-knowledge proofs (zk) can have soundness bugs that are difficult to detect, while Multi-Party Computation (MPC) is susceptible to collusion risks between nodes.

  • Privacy in zkRollups cannot be fully guaranteed because sequencers can extract user transaction data during proof generation.

  • Verifiability in Fully Homomorphic Encryption (FHE) computations is challenging because the FHE server may not perform computations correctly, and without knowing the correct result, we cannot verify its accuracy.

There are several benefits we can gain by introducing TEE:

  1. Hardware-grade safety: The privacy, confidentiality, and data integrity is guaranteed by hardware secure enclave.

  2. No computation overhead: Applications run TEE have nearly same speed compare with running in normal CPU env

  3. Low verification cost: The Gas consumption to verify TEE proof is minimal, requiring just an ECDSA verification.

  4. No Privacy Leak: The execution of ZK Prover running in TEE can be verified that it generates proofs without leaking any user data.

Case Studies

We can not guarantee any single cryptography system is 100% secure. At the same time, the current Zero-Knowledge (ZK) solution is secure theoretically but still does not guarantee system-wide bug-free operation, especially from an engineering perspective, which remains challenging due to the complexity of ZK implementation. Here's where multi-proof systems come into play, to hedge the bugs in ZK implementation, a hardware solution, Trusted Execution Environment (TEE), can be used as a 2-factor verifier to offer double security to ZK projects like zk-Rollups. Inspired by Vitalik Buterin's and a recent by Justin Drake.

🔒
presentation
post
Cover
Cover
Cover

Phala Network: Run zk-Rollup STF (state transition function) in TEE

Primus: Build Trustless zkTLS with TEE

Running SP1 zkVM in TEE H200 with Low Overhead

🚀
🔒
💾